9 research outputs found

    Evaluation of automatic transcription systems for the judicial domain

    Full text link
    This paper describes two different automatic transcription systems developed for judicial application domains for the Polish and Italian languages. The judicial domain requires to cope with several factors which are known to be critical for automatic speech recognition, such as: background noise, reverberation, spontaneous and accented speech, overlapped speech, cross channel effects, etc. The two automatic speech recognition (ASR) systems have been developed independently starting from out-of-domain data and, then, they have been adapted to the judicial domain using a certain amount of in-domain audio and text data. The ASR performance have been measured on audio data acquired in the courtrooms of Naples and Wroclaw. The resulting word error rates are around 40%, for Italian, and around between 30% and 50% for Polish. This performance, similar to that reported for other comparable ASR tasks (e.g. meeting transcriptions with distant microphone), suggests that possible applications can address tasks such as indexing and/or information retrieval in multimedia documents recorded during judicial debates

    Molecular modeling of the amphipathic helices of the plasma apolipoproteins.

    No full text
    In this paper we propose a classification of the amphipathic helical repeats occurring in the plasma apolipoprotein sequences. It is based upon the calculation of the molecular hydrophobicity potential around the helical segments. The repeats were identified using a new autocorrelation matrix, based upon similarities of hydrophobic and hydrophilic properties of the amino acid residues within the apolipoprotein sequences. The helices were constructed by molecular modeling, the molecular hydrophobicity potential was calculated, and isopotential contour lines drawn around the helices yielded a three-dimensional visualization of the hydrophobicity potential. Two classes of apolipoproteins could be differentiated by comparing the hydrophobic angles obtained by projection of the isopotential contour lines on a plane perpendicular to the long axis of the helix. The isopotential contour lines around apo AI, AIV, and E are more hydrophilic than hydrophobic, whereas they are of similar intensity for apo AII, CI, and CIII. In both cases discoidal lipid-protein complexes are generated, with the amphipathic helices around the edge of the lipid core. The long axis of the helices is oriented parallel to the phospholipid acyl chains and the hydrophilic side of the helix toward the aqueous phase. As a result of the differences in hydrophobicity potential, the contact between the hydrophobic side of the helices and the phospholipid acyl chains is larger for apo AII, CI, and CIII than for the other apolipoproteins. This might account for the greater stability of the discoidal complexes generated between phospholipids and these apoproteins.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    LCAT activation properties of apo A-I CNBr fragments and conversion of discoidal complexes into spherical particles.

    Full text link
    We studied the substrate properties of the phospholipid-cholesterol-apolipoprotein complexes generated with apo A-I, apo A-I-CNBr fragments, apo A-II and apo A-IV for cholesterol esterification by the enzyme lecithin-cholesterol acyltransferase (LCAT). The kinetic parameters determined with the different complexes as substrates, showed that the complexes containing apo A-I and apo A-IV were about 40-times more efficient than those generated with the apo A-I fragments. In this system, the substrates containing apo A-II had the lowest efficiency. In spite of the differences in the kinetic parameters observed with the various apolipoprotein-lipid complexes, the cholesterol inserted in the complexes was esterified for more than 90% after 24 h in all systems studied. Based upon the results of the kinetic experiments, we followed the transformation of the discoidal complexes into spherical particles, due to the formation of a cholesteryl esters core, in the presence of low-density lipoproteins as an external source of cholesterol. We observed the formation of spherical particles by electron microscopy, after incubation of the discoidal complexes with LCAT for 24 h. The average percentage of cholesteryl esters in the converted particles was around 60% of the total cholesterol, varying between 40% for the apo A-I-CNBr-1-DPPC-cholesterol complex and up to 86% for the apo A-I-DPPC-cholesterol complex. The secondary structure of protein in the complexes was not significantly modified. However, the phospholipid phase transition disappeared, together with the parallel orientation of the phospholipid acyl chains with the helical segments of the apolipoproteins, as the phospholipids are organized in a monolayer at the surface of the spheres
    corecore